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Introduction

It is a commonly used technique to examine a complicated group by considering its
action on geometric objects. The Outer space is a topological space introduced by
Culler and Vogtmann in [CV86] with this purpose for the group of automorphisms
of the free group. More exactly, there is a right-action of the outer automorphisms
on Outer space, which are equivalence classes in the automorphism group Aut(F,).
The points in Outer space are equivalence classes of triples consisting of a finite
graph, a homotopy equivalence to the n-rose (which is the graph with one vertex
and n edges) and a metric. The outer automorphisms act on such an equivalence
class by changing the homotopy equivalence, but the concern of this thesis isn’t this
action. Instead, the goal is to give a short introduction to defining a distance on
this space. We will define a distance function, show that it behaves properly under
the right-action and fulfills all axioms of a metric except symmetry. Furthermore,
we will see that this asymmetry isn’t even bounded by any constant factor, i.e. the
difference between the distances in each direction can be arbitrarily big. At last, we
will show that the computation of the distance between two elements of Outer space
can be broken down to finding loops of two specific forms in one of the graphs and
find the maximum ratio of lengths of these loops in the two graphs. For the proof of
this theorem (going back to Tad White), we will introduce the concept of train track
structures on graphs, which makes the proof very elegant.
The thesis is based on Bestvina’s script [Bes12] and the article [FM11].






Chapter 1

Outer Space

In the first chapter we want to give some basic definitions which we will need
throughout this thesis. Moreover, Quter space will be defined and we shortly review
the right-action of the outer automorphisms.

1.1 Graphs

Definition 1.1. A finite one-dimensional CW complex I is called a finite graph. The
set V(T') is the set of 0-cells, its elements are called vertices of I'. The open 1-cells
of I' are called edges and denoted E(I"). A closed edge is the topological closure of
an edge. A topologically closed union of edges and vertices of a graph is called a
subgraph.

To limit the repetitions of the word finite, we agree that in the sequel every graph
is finite if not stated otherwise.

Definition 1.2. The valence of a vertex v € I' is the maximal number of connected
components of U — {v} for arbitrarily small connected open neighbourhoods U of v
in I

We will consider continuous maps between graphs with their ordinary topology as
a CW complex. In the definition of Outer space, a graph with one vertex and n > 2
edges will play an important role and as all such graphs are homotopy equivalent,
we choose a representative and give it a name.

Definition 1.3. The graph with one vertex and n > 2 edges is called the n-rose R,,.

Definition 1.4. A tree (in a graph) is a contractible (sub-)graph. A maximal tree
in a graph I' is a tree that contains all vertices of I.

Remark. In a connected graph, every tree is contained in a maximal tree. A maximal
tree is not contained in any bigger tree in I'.
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Definition 1.5. The rank of a graph I is the number of edges in I' =T for a maximal
tree T'in I

Remark. The rank is independent of the choice of a maximal tree, homotopy equivalent
graphs have the same rank.

Definition 1.6. A path in a topological space X is a continuous map w: [a,b] — X,
a < b, it is called a loop if w(a) = w(b) and then may be regarded as a continuous
map w: 81 — X. A path is called immersed if it is locally injective, i.e. if for all
t € [a, b] there exists an open neighbourhood U C [a,b] of ¢, so that w|¢ is injective.
By w™! we don’t mean the actual inverse of the map but the path that is defined as
w(s) =w(a+b—s) for all s € [a,b].

If not stated otherwise, we assume for all paths and loops a = 0 and b = 1. We
now want to introduce a combinatorial way of describing paths and maps between
graphs.

Let T' be a graph, then every closed edge e is the image of an interval [0, 1] under
the continuous surjective projection

p: J] [0,1.OV(I)—T
ecE(T)

from the definition of I' as CW complex. A closed edge e can be considered as
immersed path

e:[0,1] —»T
l— p(t6)7

where t. is t considered as element of [0, 1].. We write E: [0,1] — T for the inverse
path defined as E(t) = e(1 —t) for all ¢t € [0,1]. For a vertex v in I" we get the
constant path v: [0, 1] — T" that maps everything to v. For two paths w,v: [0,1] — T,
we want to consider the formal product wv as the concatenation of those paths, i.e.
as the (not necessarily continuous) map

wr:[0,1] =T

R v(2t) for 0 <t <1/2
w(2t—1) for1/2<t<1.

Note that we write concatenations of paths from right to left. The map wv is again
a path if and only if w(0) = v(1), so a formal product wiws - - - wy defines a path
if and only if w;(0) = w;y1(1) for all 1 <4 < k. If there is a one-step backtrack,
i.e. two consecutive paths that are inverse to each other, erasing this backtrack
from the product yields a path that is homotopic relative endpoints to the original
path. Up to parametrisation, this multiplication of paths is associative. If a formal
product of vertices, edges and their formal inverses defines a path in I'; we call this
product a combinatorial path. Given a map f: I' — I and a path wyws - --wy in I it
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is clear that we have f(wiws - wg) = f(w1)f(w2) - f(wk), where we write f(w) for
the composition fow: [0,1] — I".

Now let I', TV be two graphs where we assigned a path in I to every closed edge
of I'. This clearly defines a continuous map ¢: [[.cgr) [0,1]¢ — I, which induces a
continuous map from I" to I if ¢ is compatible with the projection into the quotient.
This means that the images under ¢ of any two endpoints of edges that get identified
have to be the same. If I" is connected, every vertex gets identified with the end of
some edge and therefore, the resulting map is uniquely determined.

Hence, we may describe a continuous map between connected graphs I and IV by
assigning a combinatorial path in IV to every edge of I' in such a manner that these
paths are compatible at the vertices of I'. Obviously, not every map between graphs
can be described in this fashion.

We now identify every graph’s fundamental group with the free group of rank
n—denoted Fj,—in a certain manner.

1.1.1 Marked Graphs

Definition 1.7. A marking of a graph T" is a homotopy equivalence f: R, — T
The pair (T, f) is called a marked graph.

If we identify 71 (R,,) with F),, the marking induces an identification of the funda-
mental group of I' with F,. This is an important fact that we will use frequently.
The first observation about marked graphs is rather obvious.

Remark. Marked graphs are path-connected and therefore connected.

Proof. The graph R,, is path-connected and as it is homotopy equivalent to I, the
latter also has to be path-connected. ]

This means that most of our graphs will be connected. Since the identification of
the fundamental group with the free group depends only on the homotopy class of the
marking, there exist different marked graphs that should be considered equivalent.
Therefore, we will look at equivalence classes of marked graphs under the following
relation.

Definition 1.8. Two marked graphs (T, f) and (I, f/) are called equivalent if there
exists a homeomorphism ¢: I' — I, so that ¢f ~ f'.

Since ¢ is a homeomorphism, this clearly defines an equivalence relation. Instead
of defining the homotopy equivalence f directly, it’s often more convenient to specify
the inverse marking, i.e. the homotopy inverse of f. To do this, we make the
identification of the free group with the fundamental group of the rose explicit by
orienting the edges of R,, for an appropriate n € N and labeling them with a basis
ai,...,ap of F,,. Then, we choose a maximal tree 7" in the (connected!) graph T,
orient all edges in I' — T" and label them with a basis of F,, expressed in words in
the a;. This labeling induces an inverse marking by collapsing the tree to the single
vertex in R,, and sending each edge to the loop in R,, associated to the labeling. It
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is a homotopy equivalence because it sends the loops associated to one basis of F, to
loops associated to another basis of F,.

Ezample 1.9. We want to show that the two marked graphs shown in Figure 1.1
are equivalent. The unlabeled edges form a maximal tree, intersections of lines are

a b ab
b
r r

/

Figure 1.1: Two marked graphs with their labeling

vertices, the orientation of the edges is marked by the arrows and as always, loops
are written from right to left. We named the edges of the rose a and b instead of
a1 and as for easier reading. To show the equivalence, first name the edges of I"
according to Figure 1.2, the edges of IV are named ¢/, d’ and ¢’ accordingly. First,

dy

I

Figure 1.2: Naming of the edges of I'

we reconstruct the marking from the given inverse marking, so we have to find the
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homotopy inverses of the following maps (zg is the vertex of Rs):

LT >Ry 81T = Ry
c— A ¢ — BA
d— xo d — B
e—b e — xp.

Recall that a capital letter denotes the path corresponding to the inversely oriented
edge. The two maps are continuous because both vertices are mapped to zg, no
matter which edge we consider. The markings are then given by

f:Ra—T fli Ry =T/
a— Cd a— C'd
b— De b— D'e,

since then we have f~1 o f ~idg,, f o f~! ~idr and the same for f’. This is seen
as follows.

For the maps with domain R, i.e. f~'o f and f~'o f’, both edges start and end
at the only vertex xp. So any map given in combinatorial notation already maps this
vertex to itself. Hence, we may show that such a map is homotopic to the identity
by verifying that this is true on each edge individually with homotopies that fix
the endvertices. One example for this is f~!(f(a)) = f~1(Cd) = axp ~ a relative
endvertices, the three remaining verifications are also easy.

For the maps fo f~' and f o f/~! this doesn’t hold as the lower vertex of I" is not
mapped to itself but to the upper vertex. To verify that the first map is homotopic
to the identity, consider the continuous map g: I' — R5 that collapses the unlabeled
maximal tree T to the vertex of Ro. This is in fact a homotopy equivalence for which
a homotopy inverse g~!: Ry — I can be defined as follows: It sends the vertex of Ro
to an arbitrary vertex vy in 1'. For every edge é in Ry there exists exactly one edge
ein I' — T with g(e) = € and therefore a loop in T" that starts at vg, goes along T to
the initial vertex of e, traverses e and goes back along T to vg. The initial vertex of
e naturally is e(0) (considering e as path). Since all these loops start at vy, assigning
these loops to the edges really defines a continuous map ¢~' on the whole rose. The
algorithm for constructing ¢! is well-known from the theory of fundamental groups
of graphs, so we won’t proof that this is indeed a homotopy inverse of g.

More explicitly, we consider the continuous maps

g: T = Ry g iRy =T
c—a a— Dc
d— xg b— De.
e—b

But then, any map h: I' — T' is homotopic to the identity on I if and only if gohog™!

is homotopic to the identity on Ra. So in the case of fo f~!, we only have to examine
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gofoflogl and this can be done combinatorially. One example for this is

g(f(f (g7 (@)) = g(f(F (D)) = g(F(ay'A)) = 935" De) = 23'55"a ~ a
relative endvertices. Here, Ty denotes the upper vertex of I'. In the same way, we
may prove this for the other edge of Ro. With the described method, it is also easily
seen that f'o f/~! ~idp holds.

Now consider the homeomorphism

o:T =T
cr—c
d—d
e e

with its canonical continuous inverse. With this ¢, we obviously get ¢f ~ f’, so the
two markings really are equivalent. To see that calling these two markings equivalent
is plausible, we may look at a loop formed by going down the middle edge from the
top and then going back over the left or right edge. In both markings, this loop
represents a or B € F,,, respectively (more precisely, it is mapped by both inverse
markings to loops representing elements of the conjugacy class of a or B).

1.1.2 Metric Graphs

To define Outer space we need even more structure: we want not only a topology on
the graph but also a metric. This leads to the following definition.

Definition 1.10. A metric on a finite graph I' is a map ¢: E(I') — (0,00). The
value /(e) is called the length of the edge e € E(I"), the volume of T is the sum over
the lengths of all edges.

Given this map, we can view the graph I' as metric space by treating the closed
edges e as isometric images of closed intervals of length ¢(e). Thus, we are able to
assign a length to every immersed path that is contained in one single closed edge.
Hence, we are able to assign a length to an immersed path in I' by subdividing it into
smaller paths such that each of them is contained in one closed edge, and summing
over these lengths. The distance of two arbitrary points on the graph is then defined
as the infimum over the lengths of all immersed paths from one point to the other.
The topology induced by the metric is the same as the topology as CW complex.

Definition 1.11. Let w: [a,b] — X be a path in a metric space (X, dx), then its
length is defined as

k
[ == sup > _dx(w(ti-1),w(tr)),

a=to<t1<--<tp=b =1

where the supremum is taken over all finite partitions of [a,b]. A path is said to be
rectifiable if its length is finite.
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For two metric spaces (G,dq), (H,dy) and a Lipschitz continuous map f: G — H
we define o(f) as the smallest Lipschitz constant of f, i.e. as the smallest real number
fulfilling

dir(f(2), /() < o(f)de(x,y) forall z,y € G.

Lemma 1.12. A Lipschitz continuous path w: [a,b] — X in a metric space (X,dx)
is always rectifiable and its length is bounded by o(w) - (b — a).

Proof. Let w: [a,b] — X be a Lipschitz continuous path, then we get

k
||wl| = sup > dx(wlti),w(t))

a=to<t1<--<tp=b =1
k
< sup Z o(w)dq ) (ti-1,t1)

a=tp<t1<---<tp=b =1

=o(w)(b—a) < 0.

O]

Remark. Every immersed path — and therefore every immersed loop — in a finite
metric graph has finite length.

Proof. Let w: [0,1] — I be continuous, then it is uniformly continuous by compact-
ness of [0, 1] and we may choose 6 > 0, such that

djo,1)(s,t) <6 = dr(w(s),w(t)) <e forall s,t € [0,1],

where € > 0 is the length of the shortest edge in the finite graph I". Once entered
an edge, the path w has to traverse it completely or stop, as 180° turns contradict
its immersion at the turning point. By subdividing [0, 1] into finitely many parts of
length smaller than & we therefore can achieve that w maps each of them to at most
two edges of I'. But then, the finite sum over the lengths of all these edge pairs is an
upper bound for the path’s length. O

Definition 1.13. Let ¢: I' — I be a continuous map between metric graphs and w
a non-trivial path in I'. Then the slope of ¢ along w is defined as the quotient of the
lengths of ¢ o w and w, i.e.

[|¢ o wl|

Slopew(¢) = HWH

If e is a closed edge of I', we say that ¢ has constant slope on e if for all non-trivial
paths w: [0,1] — e the slope of ¢ along w is the same.
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1.2 QOuter Space

Combining the different types of graphs of the previous section we will consider finite
marked metric graphs with volume 1 where all vertices have at least valence three,
written as (T, £, f). Two such triples (T, ¢, f), (I, ¢, f') are called equivalent if there
exists an isometry (i.e. an isometric isomorphism) ¢: I' — I, such that ¢f ~ f’.
Finally, we are ready to give the definition of the space we are interested in.

Definition 1.14. The Outer space is defined as
X, := {(T, £, f)| triples as described above, where 71(T') = F,,} /~,
where the equivalence relation is the one defined above and n € N.

If there is no ambiguity, we may—to shorten notation—write I' = (I, ¢, f) € A,
instead of [(I', ¢, f)] € A,. For easier reading we will also often switch between
equivalence classes and representatives without making this explicit. Since conjugacy
classes in F;, correspond to free homotopy classes of free loops in R,,, we may examine
them by sending these loops via the marking to our graph I'. To consider the simplest
representatives possible, the following proposition comes in handy.

Proposition 1.15. FEvery free homotopy class of a free loop in a graph has a unique
immersed Lipschitz continuous representative (up to parametrization of S*).

Proof. Let I" be a graph and w be a loop in I'. Define a metric on I' such that every
edge has length 1. Consider the open cover U of I' that consists of the open edges
and the open sets

Byja(v) ={x € T'[d(z,v) < 1/2}

for all vertices v in I'. Then, the preimages of the open sets in U under w define an
open cover of S!. Lebesgue’s number lemma guarantees the existence of a number
e > 0 such that for every point z € S! the neighbourhood B.(x) is fully contained in
one of those open sets. So let t1,...,t; € S be finitely many points such that for all
1 <4 < k the image of the closed arc between ¢; and ¢; 11 (denoted [t;,¢;4+1]) under w
is fully contained in one of the open sets of U. As all sets in U/ are contractible, the
loop w is homotopic relative t1, ..., ¢ to a loop «’ that is linear on [t;, t;4+1] for all i.

But then, the preimage V of V(T') under «’ is finite and therefore, we may piecewise
linearize w’ via a homotopy fixing V. This is true since w’ restricted to some arc
in S! disjoint to 1% maps to exactly one open edge, which obviously is contractible.
By reparametrisation, we therefore get a loop w” homotopic to w and finitely many
points s1,..., 841 such that every w’(s;) is a vertex of I' and w” linearly maps
[si, sit+1] onto exactly one closed edge e; of I" for all 1.

The loop w” is immersed if and only if for all 1 < i < [ we have e; # e, +11 and
el # el_l. This is equivalent to ejes---¢e; being cyclically reduced as word with
letters E(T") and its inverses. Since w” is a free loop, we may replace any part of
it corresponding to a one-step backtrack e; = e +11 or e; = efl by a constant path

10
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without changing the free homotopy class. By cyclically reducing the word and
simultaneously changing and reparametrising w” accordingly, we therefore really get
an immersed representative of w in I'. This may be done in such a manner that after
every step, the resulting loop is piecewise linear and therefore Lipschitz continuous.

We now want to show that this representative is—up to reparametrisation of S
unique. Therefore, let v be another immersed representative of w. Fixing a maximal
tree T in I", we may represent both w” and v by reduced words in the edges of I' — T'
and their inverses. Since v is freely homotopic to w”, the words representing them
considered as elements of the free group 71 (I') have to lie in the same conjugacy class.
But as both words are cyclically reduced, the word for v really has to be a shift of
the word for w”. Hence, v can be obtained from w” by reparametrising S*. O

In this proof we used the fact that every conjugacy class of a free group contains
a cyclically reduced representative that is unique up to shifts. To cyclically reduce
a word, we first reduce it. Now we remove the first and the last letter if they are
inverse to one another and repeat this until this is not the case anymore. The result
is a cyclically reduced word that lies in the same conjugacy class as the reduction of
the original word. It is now easily seen that among words whose reduction is in the
same conjugacy class, the cyclic reduction is unique up to shifts. If « is a conjugacy
class in F),, we write a|I': S* — T for the unique immersed Lipschitz continuous
representative of the free homotopy class f(«). Using this representative we can
define the length of conjugacy classes, which will be very important for the definition
of the Lipschitz distance in the second chapter.

Definition 1.16. The length ¢p(a) for a non-trivial conjugacy class « in F), is
defined as the length of a|I" in T, which can be calculated by summing over the
lengths of all traversed edges of «|T.

At last, we want to quickly sketch the right-action of the outer automorphisms on
Outer space.

1.3 Outer Automorphisms

Definition 1.17. The inner automorphisms of the free group are defined as
Inn(F,) := {f € Auwt(F,) Iz € Fy: f(z) =2 'z Vr € Fn} :

which is a normal subgroup of Aut(F,,). The outer automorphisms are defined as
the quotient group
Out(Fy,) := Aut(F,)/ Inn(F,).

Two representatives of elements in Out(F,,) are equivalent if the images of each
word differ only by conjugation with one fized element of F;,. Therefore, a word in F,
is mapped by equivalent automorphisms to representatives of the same conjugacy class.
As the representatives are automorphisms, we can—by the identification 71 (R,) = F),

11



1 Outer Space

as always—view an element ® € Out(F},) as a homotopy equivalence between R,, and
itself with homotopy inverse ®~!. Hence, there is a right action of Out(F},) on Outer
space: For an element ® € Out(F,,), the map f® := f o ® is a homotopy equivalence,
so the following is well-defined:

(I, f)- @ :=(I,¢,f®) for (I',¢, f) € X,.

As it turns out, this action has some good properties like properness. From these, we
already can retrieve information about the outer automorphisms, but as said before
this is not part of this thesis.

12



Chapter 2

The Lipschitz Distance on
Outer Space

This chapter mainly concerns the definition of the Lipschitz distance and some facts
about it. In the definition there is an infimum, but we will show that this is in fact
a minimum and moreover that we can reduce the set in whose minimum we are
interested in by a large amount. In the last part of this chapter we will prove that
the Lipschitz distance is an asymmetric metric.

If we have two points in Outer space (I, ¢, f), (I, ¢, f') € X,, we may look at
continuous maps ¢: I' — IV with ¢f ~ f’, even if they aren’t isometries. Such maps
form the basis for the Lipschitz distance and therefore get their own name.

Definition 2.1. Given (T, ¢, f), (I, ¢, f') € X,, a Lipschitz continuous map ¢: I’ — I”
with ¢f ~ f’ is called a difference of markings map.

2.1 The Lipschitz Distance
Definition 2.2. For I',TV € X,,, the Lipschitz distance is defined as

d,T") = igf logo(¢),

where the infimum is taken over all difference of markings maps ¢: I' — I".

Note that there always exists a map ¢ with ¢f ~ f’, for example ¢ := f' o f~1,
where f~! is a homotopy inverse of the marking f. Like in the proof of Proposition
1.15, we may use Lebesgue’s number lemma to piecewise linearize ¢, obtaining a
Lipschitz continuous map. Therefore, there always exist difference of markings maps
and the infimum is not taken over the empty set. We will see in Proposition 2.8
that the Lipschitz constant is at least one for all difference of markings maps, so the
infimum really exists. First, we make the following observation to reduce the number
of maps we have to consider.

13
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Proposition 2.3. Let ¢: I' — I be a Lipschitz continuous map between I', TV € X,,.
If o: T — I has constant slope on all edges in T and ¢ ~ ¢ relative vertices, then

o(9) < o(9).

Proof. Let the closed edge e € E(T") be one of slope (¢) under ¢. This has to exist
because the Lipschitz constant equals the maximal slope and there are only finitely
many edges. Consider the restrictions w; := @|. and wy := ¢|., which can be viewed
as paths in I between two points z and y. The first one is a linear immersed path,
the latter one is homotopic relative endvertices and therefore has to traverse at least
the same path as w; (possibly plus some detours). This is seen as follows:

The universal cover (f’ ,p) of the connected graph I" is a tree on which we fix some
T € p~!(z). By the lifting property of this cover, the paths wi,ws lift uniquely to
paths w1, w9 in I’ starting at x, and as the homotopy relative endvertices between
them also lifts uniquely, it follows @y (1) = wa(1) =: y. As wy is immersed, its lift @
is an immersed path on the tree [’ and therefore meets each point at most one time.
Now assume that there exists some point ¢ # Z, y on this path which is not met by
wo. Then, wy connects z and y in I — q- But as w; passes ¢ exactly once and ¢
separates I’ into two path components, T and y have to lie in different components
of I —§. 4
Projecting back to I leads to the stated fact.

As the paths are Lipschitz continuous, Lemma 1.12 implies that they are rectifiable
and that the following holds:

(@) - Ue) = ||wnll < l|lwal| < a(@) - £le).
Since e has positive length, the claim follows. O

This means that—in most cases—we can focus on maps with constant slope on the
edges.

Definition 2.4. A difference of markings map ¢ is called optimal if it realizes the
infimum of the Lipschitz distance and has constant slope on all edges.

2.2 Existence of Optimal Maps

For the existence of optimal maps we need some help from functional analysis, in
particular the following standard theorem that is part of most textbooks in this area.

Theorem 2.5 (Arzela-Ascoli, e.g. [MP78, pages 76-77]). A subset F C C(X,Y) for
a compact Hausdorff space X and a complete metric space Y has compact closure if
and only if F is equicontinuous and the set {f(x)| f € F} has compact closure in Y
for all x € X. The set F is called equicontinuous if for all e > 0 and x¢g € X there
exists a 0 > 0, such that

dx(z,x9) <6 = dy(f(z), f(xo)) <e foral feF,zeX.

14



2.2 Existence of Optimal Maps

The topology on C(X,Y) = {f: X — Y continuous} we are talking about is
induced by the metric

d(f,g) == sup dy (f(z), g(x)) for f,g € C(X,Y).
zeX
It is easy to see that a compact metric space has to be complete (if a Cauchy
sequence has a convergent subsequence, then it is convergent itself). Since furthermore
all metric spaces are Hausdorff and the closure of any subset of a compact set is
compact, we may formulate a useful special case.

Corollary 2.6. A subset F C C(X,Y) for two compact metric spaces X,Y has
compact closure if and only if F is equicontinuous.

This enables us to state the following proposition.

Proposition 2.7. The infimum inf,logo(¢) over all ¢: T' — I difference of mark-
ings maps between (T, 4, f) and (I, 0, f') € X, is realized.

Proof. 1t suffices to show that inf, o(¢) is realized, as we will see later that this
infimum is always at least one (this will be proved without using this proposition).
Define ¢ := infy o(¢) and consider the set

F:={¢:T —I'"| ¢ is 2¢-Lipschitz continuous, ¢f ~ f'} c C(T',I").

F' is equicontinuous by construction and hence-by Corollary 2.6-the topological
closure F is compact. We choose a sequence of difference of markings maps ¢, € F
with o (o) £ ¢ and get a convergent subsequence (¢r,) with ¢y, 1o, ¢ €F.
Our next goal is to show the Lipschitz continuity of the limit ¢.

Let z,y € I' and € > 0. Choose lp € N such that we have o(¢y, ) <c+e and
d(¢, dr,,) < € dr(z,y). With this ly, it holds

drl(¢($), ¢(y)) < drl(¢($), ¢kl0 (l’)) + dl—" (¢kl0 (l‘)7 (bklo (y>) + dl—"((bklo (y>7 ¢<y))
<edr(z,y) <(cte)dr(z,y) <edr(z,y)
< (e¢+ 3¢) - dr(z,y).

Since € > 0 was arbitrary, we get o(¢) < ¢. To finish the proof, we have to show that
¢f ~ f’ holds, since then ¢ € F' and because of that o(¢) = c.

Therefore, we choose a map ¢ in the sequence so that d(o, q~5) < &, where 8 - ¢ > 0
is smaller than the length of the shortest edge in I'. We now show ¢ ~ ¢, as this
implies ¢f ~ ¢f ~ f'.

We define a homotopy H; from ¢ to ¢; that moves the image of all vertices from
their image under ¢ to that under qz~5 Therefore, we choose a linear path w, between
$(v) and ¢(v) for each vertex v in I' and insert it at every edge starting at v such
that the inserted part in I' has sufficiently small length. Now that the length of
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2 The Lipschitz Distance on Outer Space

each such path in I" is smaller than e, we may do this in such a manner that the
distance of ¢ and ¢; is smaller than 3¢ as seen in Appendix A.1. With this, we get
d(¢,¢1) < 4e =: € since

d(¢7 ¢1) S d(¢7 ¢) + d(¢7 ¢1) < 4e.
<e <3e

Due to the choice of €, the upper bound for their distance £ is smaller than half the
length of the shortest edge in I". Additionally, it holds ¢1(v) = ¢(v) for every vertex
ve V().

So we only have to consider the edges of I', i.e. we have to find a homotopy from
¢1 to q§ relative vertices. Hence, let e be an edge of I', then we can view the two
maps wp = (5‘5 and wy 1= ¢4z as paths in IV with the same starting and ending
point. Now consider the universal cover p: I — I and lift the paths to @; and @s
with the same starting point. If we are now able to show that their endpoints are the
same, too, then they are homotopic relative endpoints because the universal cover
is a tree. But then, this homotopy projects back to I which leads edgewise to the
homotopy from ¢; to ¢, hence finishes the proof.

To accomplish our goal, we first define a metric on the universal cover in the obvious
way and show that dx, (W1,Ws) < &. Assume not, then there exists a ty € (0, 1], such
that dg, (W01(t0), w2(to)) = € as both paths start at the same point. Now let w be
a path in IV between these points’ projections wi(ty) and wa(tp) of length strictly
smaller than &, then this lifts to a path @ in I’ of the same length starting at @i (tg)
and ending in a point P that maps to wa(tp). In particular, the distance between
P and w;(tp) is different from that between wo(tg) and wy(ty), so P # Wa(tp), but it
also holds

dy, (P, wa(to)) < dy, (P, wi(to)) + dy, (@1(to), wa(to)) < 2¢.

<& =

We therefore get two distinct points on the universal cover with distance strictly
smaller than one edge length that are mapped to wa(to), which is not possible. 4

In particular, we get d, (w1(1),w2(1)) < €, which implies because of the choice of
¢ and the fact that p(w1(1)) = p(@w2(1)) indeed w;(1) = wWa(1). O

Combined with Proposition 2.3 this shows that optimal maps always exist, which
will make all following considerations much easier.
2.3 Properties of the Lipschitz Distance

The next proposition states that the Lipschitz distance is an asymmetric metric
which behaves well under the right-action of the outer automorphisms.

Proposition 2.8. (i) d(I'1,T's) < d(T'1,T3) +d(T'2,T'3) for allT; € X,
(ii) d(T®,T'®) = d(T,T’) for aliT,T" € X, ® € F,
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2.3 Properties of the Lipschitz Distance

(111) d(T',T7) >0 for all T,T" € X,,, equality implies T =T".
To prove it, we need the following lemma.

Lemma 2.9. Homotopy equivalences between finite connected graphs without vertices
of valence < 1 are always surjective.

Proof. Let ¢: T' — I be a homotopy equivalence between finite connected graphs
I', I without vertices of valence < 1. Assume ¢(I') C I", then let ¢! be a homotopy
inverse of ¢ and p a point in IV — ¢(I"). As the image of ¢ is compact and therefore
closed in I, we even may assume p to lie on some open edge e. Now consider the
subgraph A of IV which is defined as the union of all closed edges of I except e. We
now show that IV — {p} is connected, as this implies that A is connected, too.

Assume not, so there are exactly two disjoint connected components I'}, T of
I — {p}. As ¢(T') is connected, it is completely contained in one of the components,
so assume that it is contained in ;. We have ¢ o ¢~ ! ~idy, so for every free loop o
in I, the loop ¢ o ¢! o v is a representative of the free homotopy class of o that is
fully contained in I'}. Hence, I', has to be contractible, which is not possible because
there would be at least one vertex of IV with valence one. 4

Therefore, A is connected and we may choose a maximal tree T in it. Since the
valence of every vertex in IV is at least two, the subgraph A contains all vertices of
I, so T is also a maximal tree in I'V. Then, the fundamental group of I is free on
the edges in IV — T, so let 3 be a loop that is represented by the word e. The loop
v :=¢o@p ! ofis freely homotopic to 3, hence the word w representing this loop
has to lie in the same conjugacy class as the word e. But as ¢ does not meet p, the
path ~ cannot traverse e completely and therefore, the letter e cannot be contained
in w. This, however, is not possible since all conjugates of the word e contain the
letter e at least once. 4 O

Proof of Proposition 2.8. (i) In general, for Lipschitz continuous maps X NNy
between metric spaces X, Y, Z, the following is true for all x,y € X:

dz (go f(x),g0 f(y)) < o(g)dy(f(x), f(y)) < ol(g)o(f)dx(z,y).

Let T'y ¢—1> I's and I'y ﬁ) I's be optimal maps. Since ¢ o ¢1 is a difference of
markings map for I'y and I's, this leads to

d(I'1,I's) = inflogo(¢) < logo(¢z 0 é) < log((é2)o(d1))
=logo(¢2) +1loga(d1) = d(I'2,I'3) + d(T'1, I'2).

(ii) Let f, f’ be the markings of I',T" and v: I' — I'" be an optimal map, so that
vf ~ f'. But then also vf® ~ f’® holds and hence, v is a difference of markings
map for I'® and IV®. This implies d(T'®,I"®) < d(T',I’) and the same argument for
&1 (® is an automorphism) leads to

d(I,T) = dTed 1, T'ed™ 1) < d(I'd, I'®) < d(I',T),
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2 The Lipschitz Distance on Outer Space

which means the inequalities are in fact equalities.
(iii) Let I',T” € X, and ¢: ' — I'" a difference of markings map. Assume that the
maximal slope of ¢ is strictly smaller than one. Then it holds

vol(im(é) < Y2 [6e)] < 30 1-lel =1 =vol(I"),

ecE(T) ecE(T)

so ¢ is not surjective (the definition of volume is canonically extended to not only
subgraphs but connected subsets of graphs). Furthermore, the homotopy equivalence
¢f from the rose to I'" is not surjective, but this is a contradiction to Lemma 2.9
(recall that in the definition of Outer space we only allowed graphs whose vertices
have valence at least 3). 4 So the maximal slope of any difference of markings map
is at least one and consequently, we have d(I",I") > log(1) = 0.

Now, let d(I',T”) = 0 and ¢: I' — I' be an optimal map with o(¢) = 1. This
implies in fact that all slopes are equal to one, since else vol(im(¢)) < 1 like in the
previous paragraph. The images of two distinct closed edges meet only in finitely
many points as else the volume would decrease, too. This implies in fact that every
vertex of I' has to be mapped to a vertex in I since the minimal valence in I is
three. The intersection of the images of two distinct open edges cannot contain a
point of an open edge of I'" since then it would have non-zero volume. This is true as
¢ is locally injective (constant slope) and hence the intersection would contain some
non-empty e-ball. With similar argumentation, the map ¢ restricted to an edge can
meet every point on an open edge of IV at most one time. Altogether, the graph I"
results from I' by identifying finitely many points through ¢. We now want to show
that identifying points of I' increases the rank, contradicting the fact that the graphs
are homotopy equivalent. As the number of identified points is finite, it suffices to
show that the rank of I" is strictly greater than the rank of I' in the case that ¢
identifies exactly two distinct points.

If a # b € I are those two points, we choose a maximal tree T in I' with @« € T'. In
the case b ¢ T, the point b is no vertex, the edge containing b is not in 7" and ¢(7")
is still contractible. The last fact is true because ¢|r is injective, T' is compact and
I'" is Hausdorff, implying that 7" is homeomorphic to ¢(7T"). The image of b under ¢
is a vertex and the edge e containing b splits under ¢ into two edges. This means
that the image of e contains two edges of I, so IV — ¢(T') contains one edge more
than I' — 7. But as ¢(T') still contains all vertices of I", it is even a maximal tree
and therefore, the identification increased the rank of the graph.

If b € T, the path along T from a to b projects under ¢ to a cycle. Since ¢(T') still
contains all vertices of IV, we have to reduce it by at least one edge to get a maximal
tree in I, so the rank increased, too.

Thus, no points are identified, ¢ is an isometry and therefore I' = I in X,,. ]
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Chapter 3

Calculating the Distance of Two
Graphs

This chapter concerns calculating the distance of two concrete points in Outer space.
From the definition, we get an easy way to calculate an upper bound: we take an
arbitrary difference of markings map, calculate the Lipschitz constant and take the
logarithm of this number. The next proposition shows a way to determine a lower
bound, and if the two bounds agree, we have calculated the distance.

Proposition 3.1. If a is a non-trivial conjugacy class in F,,, then

EF/(O&)

<4, 1’ orI'\T" € &,,.
) <A

log

Proof. Let ¢: ' — I be an optimal map between I', T € X,, and « a non-trivial
conjugacy class in F,,. Then, the formula is equivalent to ¢p/(a) < o(¢) - Ip(a).
The loop ¢ o a|I" is a Lipschitz continuous representative of « in IV and therefore
rectifiable. Since it may not be immersed, this immediately leads to

tr(e) <|lgp(alD)|] < o () - [|a[T]| = o(¢) - fr ().

O]

Ezample 3.2. We want to compare the distances d(G, H.) and d(H., G) for the graphs
in Figure 3.1 which we will consider as equivalently marked, so the left edges of both
marked graphs represent the same conjugacy class in F;,. Of course, the same is true
for the right edges. Considering the canonical difference of markings map ¢: G — H.
that sends the left edge of G with constant slope to the left edge of H and the same
for the right edge, we get the slopes 2¢ on the left and 2 — 2¢ on the right edge, so
we know

d(G, H.) < logmax{2e,2 — 2¢}.
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3 Calculating the Distance of Two Graphs

N[
N

G H.

Figure 3.1: The graphs G and H; for 0 < e < 1

Now consider the conjugacy class «; in F5 which is represented both in G and H. by
the left loop. With the previous proposition we get

Cn. ()
la(a)

By considering the conjugacy class «, which represents the right loop, we get
d(G, H.) > log(2 — 2¢). In total, this leads to

d(G,H.) > log = log 2¢.

d(G, H.) = logmax{2e,2 — 2c} <log2 forall0<e< 1.

For the distance d(H., G) we consider once again the conjugacy class o and get

fe(a) = log 1 =20 .

14 H. (Oé) 2e

This shows that the Lipschitz distance is no metric due to its lack of symmetry.
Furthermore, we see that the asymmetry isn’t even bounded by any constant factor,
so the Lipschitz distance can be considered very asymmetric. By considering o,
and the canonical difference of markings map we even can calculate the distance

explicitly, yielding

d(H:,G) > log

1 1

d(HE, G) = logmaX {257 2—25} .

In general, it is very complicated to guess an optimal map so that it would be
convenient if we could skip this step. This is indeed the case and with the next
theorem we formulate the main result of this chapter: there is an easy way to
effectively compute distances in Outer space.

Theorem 3.3 (White). Let I', TV € X,,. There always exists a conjugacy class o in
F,, so that

r(a)
{r(a)

log =d(T,T).
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3.1 Train Track Structure

Such conjugacy classes are called witnesses. The proof of the theorem comes later
in this chapter, it makes use of an additional structure on the graph I' which shall
be described in the next section.

3.1 Train Track Structure

Let G, H be metric graphs without any further restrictions, x € G an arbitrary point
and ¢: G — H a continuous map with constant slope on the edges of G. We now
define the set of directions at = € G named T,(G) as germs of isometries from [0, €]
to G starting at x, so two such isometries [0, &;] — G represent the same germ if and
only if they agree on an interval [0,¢] with 0 < e < min{eq,e2}. For a vertex v € G,
our map ¢ naturally induces a mapping

¢x: Ty(G) — Tyw)(H)

since for a direction v € T,,(G), ¢ o v is an isometry stretched by the slope of the
corresponding edge (choose € smaller than the length of the edge) and hence can be
identified with a direction at ¢(v) by reparametrisation. So we are able to define the
following equivalence relation on 7, (G):

di ~ dy <= ¢*(d1) = (b*(dg) for directions di,ds € TU(G). (31)

Informally two directions are equivalent if their images under ¢ point into the same
direction. With this construction in mind, we define the following structure on G.

Definition 3.4. For all vertices v of the graph G, let ~, be an equivalence relation
on the germs of isometries 7, (G). Then the collection of equivalence classes in
T, (G)/~, for all vertices v is called a train track structure on G. The equivalence
classes are called gates.

So by construction, the map ¢: G — H considered earlier defines a train track
structure on G by the equivalence relations (3.1) for every vertex v of G. If we
visualize our graphs, it is convenient to draw the ends of edges that define equivalent
directions as tangent to each other. We now want to consider an immersed path
w: [a,b] = G. Every to € [a,b] that gets mapped to a vertex is called a turn. For
every turn, we consider the two maps

iv: [0,e] = G
s w(ty £ s)

for an appropriate € > 0. Since these maps are locally injective, they can be identified
with isometries and therefore define a gate.

Definition 3.5. For every turn, the gate defined by i_ is called entering gate, the
one defined by i eziting gate of the turn. If the gates are distinct, the turn is called
legal, otherwise it is called illegal. A path is called legal if every turn is legal.
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3 Calculating the Distance of Two Graphs

3.2 The Existence of Witnesses

After this short section about train track structures, we are now able to give the
proof of the theorem.

Definition 3.6. For an optimal map ¢: I' — I" the tension graph Ay is defined
as the subgraph of I' which contains exactly those edges where the slope of ¢ is
maximal.

Since ¢ has constant slope on its edges, the tension graph is equipped with a train
track structure as introduced in the previous section. The whole construction was
only necessary for the following lemma, which obviously is very important for the
proof of the theorem.

Lemma 3.7. Let I',T' € X,, with d(T',T') =log A and ¢: T’ — I” an optimal map. If
for a non-trivial conjugacy class o in F,, the immersed representative o|T is contained
in the tension graph Ay and is legal, then

fr/(&)

) =\

Proof. Since the slope on the tension graph is constantly A\, we just need to show
that ¢ o T is immersed in I”. This loop ¢ o a|l' =: 3 is a representative of « in I
that is locally injective at all points ¢ € S* that «|T" doesn’t map to a vertex. This is
true since we can choose a neighbourhood U of ¢ in which «|I" is injective and doesn’t
pass a vertex. The restriction of ¢ to «|I'(U) then has constant slope, so by shrinking
U we may assume that ¢’a‘1"(U) is injective. Restricted to this neighbourhood, § is
injective, hence (3 is locally injective at t. But 3 also has to be locally injective at all
t € S1 that get mapped to vertices of I' due to legality of the turns, thus ¢ o a|T is
immersed. O

Inspired from this lemma, we want to prove the existence of legal loops with as
few restrictions as possible. The visualisation of the following proof can be viewed in
Figure 3.2.

Lemma 3.8. If every vertex of a graph G with train structure has at least two gates,
then G contains a legal loop in the form of either

e an embedded circle traversing each edge at most once

o the red loop in the fourth image of Figure 3.2, traversing the edges on the circles
exactly once and those between the circles (there don’t have to be any) in each
direction exactly once.

These types of loops are called candidates.
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3.2 The Existence of Witnesses

Proof. Construct an arbitrary legal path (by extending under consideration of the
gates) until it intersects itself and consider only the cyclic part of this path, starting
at the intersection. This is possible since there are at least two gates at every vertex.
If the path is legal we are finished, so let’s assume it is not. Then continue until
the path intersects itself for the second time. If the path uses three distinct gates at
the second intersection, a legal embedded circle is easily found. But even if not, we
can construct a legal loop as follows. By following the path from the beginning, it
is divided by the intersections into three parts, to which we will refer to as paths
a, b, c. In the case that the two intersections coincide, let a,c be the two parts of the
path and b the constant path at the intersection. If the second intersection is on the
embedded circle, either be (first image of Figure 3.2) or a~!c (second image) is legal,
producing a legal circle. If not, then either ¢ or b~!cba is legal (third and fourth
image). O

=
oat

Figure 3.2: Possible legal loops in the proof of Lemma 3.8, the starting point is
marked as black dot, the four cases are in the same order as in the proof

0

We are now ready to prove the theorem.

Proof of Theorem 3.3. With the two lemmata from above we only have to show that
there exists an optimal map where every vertex of the tension graph has at least
two gates. Let ¢ be an arbitrary optimal map with Lipschitz constant A. If it has
at least two gates at every vertex in the tension graph, we are finished, so assume
that there exists a vertex v € Ay with only one gate. Then, we try to manipulate ¢
in such a way that this vertex won’t be in the tension graph of the thereby created
difference of markings map ¢.

For that, we define a homotopy H: I' x [0,1] — I" from our ¢ to another difference
of markings map ¢. This map H is stationary on all vertices but v, which is moved
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3 Calculating the Distance of Two Graphs

slightly in the direction ¢.(d,) where d, € T,,(Ag) is one representative of the only
gate. We do this linearly, i.e. for all ¢ € [0, 1] the map H(—,?) is linear on all edges.
Therefore, the slope on edges not incident to v is not changed. If an edge is incident
to v and contained in the tension graph, the slope of ¢ on this edge decreased due
to the movement of ¢(v) and hence is strictly smaller than A. Among the edges
incident to v that aren’t contained in Ay, there may be some on which the slope
of ¢ increased because of this perturbation, but as these are only finitely many we
can make this adjustment small enough so that the slope of ¢ on those edges is still
strictly less than .

All together, we now have a difference of markings map ¢ which has constant
slope on the edges and where the maximal slope is < A. Since A already is the
smallest possible Lipschitz constant, ¢ is even an optimal map. Furthermore, we
have Ay C Ay since v and its incident edges aren’t contained in the new tension
graph.

As X is the minimal Lipschitz constant for difference of markings maps between
I’ and I, we cannot remove all the vertices from the tension graph of ¢ by this
operation, and because there are only finitely many vertices, we eventually get an
optimal map whose tension graph has at least two gates at every vertex. O

We hereby proved that witnesses always exist. Furthermore, we have seen that
we can compute the distance d(I',T") by finding all non-trivial candidates in I" and
taking the logarithm of the maximum ratio of lengths in IV and I" for those finitely
many loops, i.e.

lr (@)

d(I',T") = log max .

(I T7) = log ol Lr(a)
candidate

Since in every graph in Outer space the length of a conjugacy class [w] is equal to
the length of [w™!], we in fact only have to consider half the amount of candidates.

3.3 Exemplary Computation of the Lipschitz Distance

After all this theory, we want to actually compute the two distances between a pair
of points in Outer space with this method. We will hereby see that even for small
graphs we have to consider a relatively big number of candidates, as finite doesn’t
necessarily mean few.

Ezample 3.9. Let R3 be the 3-rose with inverse marking a, b, c on the edges and
edge length % each. We now calculate the distance from this graph to the graph I
described in Figure 3.3. First, we have to reconstruct the marking from the given
inverse marking. We therefore name the edges of I' so that the inverse marking is
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3.3 Exemplary Computation of the Lipschitz Distance

bacB

r

Figure 3.3: A graph with edge length % each. The edge on top is called d, those at
the bottom e (left) and f (right).

given by

71T = Ry
d—a
e — abA
f > bacB.

We now claim that the marking is given by

fiR3—T
a—d
b Ded
¢ — D?Edf Ded.

We easily calculate
f(abA) = dDedD ~ e and f(bacB) = Ded’D*Edf DedDEd ~ f

relative endvertices. With f(a) = d, this implies that f o f~! ~ idr, the other way
round is also easy. The marking of Rj3 is obvious, so we may skip that. Computing the
distance d(Rg3,I") means finding all candidates in R3 and calculating the corresponding
ratios. All these candidates look like those in Figure 3.4, so we consider those for
different combinations of edges. Hereby, we don’t have to consider candidates that
are inverses of candidates we already took into account. For each possible form, there
are three different candidates in the graph. In the tables, they are listed in the same
order as in Figure 3.4.
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3 Calculating the Distance of Two Graphs

candidate in R3 immersed loop in I' {1 /4R,

a d % % =1
b e % % =1
c DEdf De 8/ =6
ba ed %/% =1
ca / 3/3= 2
cb DEdf De? /2=1
Ba Ed 2/2=1
Ca EdF Ded? 1/2=1
Cb FDed? 2/2=125

Table 3.1: Ratios of candidates in R3

candidate in I immersed loop in R3  {g,/lr

d a %/%:1
e b 3/i=1
f ac 2/1=2
ed ab %/%:1
fd bacBa 2/2=13
fe bacBabA /2=1
Ed aB 2/2=1
Fd bC ABa 2/2=3
Fe bC ABabA /3=1

Table 3.2: Ratios of candidates in T’
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3.3 Exemplary Computation of the Lipschitz Distance

Figure 3.4: Possible candidates in R3 (up to permutation of the edges)

Table 3.1 leads to the result that the maximal ratio is 6 and therefore we have
d(R3,T") = log6.

For the other distance we have to consider candidates in I', which have the same
possible forms as those in R3. From Table 3.2 we can conclude that
7
d(T', Rs) = log 7
which shows once more the asymmetry of the Lipschitz distance. We also see that
there are even two different candidates—namely fe and Fe—which are witnesses of
this distance.
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Conclusion

In this thesis we examined the metric structure of Outer space. After defining the
distance function we have seen that there always exist optimal maps, and we therefore
can discard all difference of markings maps that aren’t linear on the edges. As there
are still many of them, we wanted to make the computation even simpler and proved
the fact that there always exist witnesses in certain forms. We therefore showed the
validity of the alternative definition

(@)
d(I,T') = 1
(I,17) max log 7

candidate

for I,TV € X,,.

The crucial fact is that the candidates in I' are only finitely many.

With these facts in mind, we now have the basics to consider other properties of
this distance. For instance, we could wonder if we can define a topology induced by
this asymmetric metric and examine if it is equivalent to other topologies defined on
Outer space (e.g. the simplicial topology). Interesting is also the question how we
can symmetrize the Lipschitz distance to get a proper metric, because if we do this in
a certain manner, the induced topology is indeed the simplicial topology. One could
also think about completeness, which is different when considering the asymmetric
or the symmetric metric. Another topic not covered in this thesis is the fact that
there exists a deformation retract of the whole space on which the Lipschitz distance
18 quasi-symmetric, i.e. there exist universal constants that constrain the difference
between d(I',T") and d(I,T).

Most of these and many other results are covered in [FM11], which provides a
good starting point to getting useful information about outer automorphisms by
examining the Lipschitz distance.
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Appendix

A.1 Explicit Homotopies

Here we give the explicit homotopy H; for the proof of Proposition 2.7, so all notation
relates to that proof. Let ¢’ := min{ﬁ, %} and choose for every vertex v of I' a
linear path w,: [0,&'] — I from ¢(v) to ¢(v) of length at most e. We don’t define
¢1 but rather the restriction ¢;|. for every closed edge e in I'. Let vi,ve be the
endvertices of e. Identifying the edge with [0, 1], the map is then given by

b1]e: [0,1] = TV
Wy, (8) 0<s<¢é
s ¢ d(g(s)) g <s<1-¢
Wy (1—8) 1—-¢ <s<1,
where g: [0,1] — [0,1] is the continuous reparametrisation g(s) = 18:25;,. Since
wy, (€) = ¢(g(e')) and wy, (1 —€") = ¢(g(1 — €’)), the map is continuous. Two edges
sharing a vertex map it to the same element in I/, so this indeed defines a continuous
map ¢; on the whole graph T'.
We now show that this map is homotopic to ¢ by defining a homotopy on each
closed edge. With the same notational conventions as before, define

Hile: [0,1] x [0,1] — T
Wy, (s + (1 —t)e") 0<s<te
(s,t) — § d(g(s,t)) te! <s<1—te
w(1—s+(1—1t)e) 1—-tdd <s<1,

with the continuous map g: [0,1]2 — [0, 1], (s,t) — f_;f;, for all ¢t € [0, 1]. The map

Hi|. is easily checked to be continuous. The movement of the endvertices’ images
does only depend on the parameter ¢ and the vertex, so all these maps together indeed

define a homotopy H; on the whole graph. Being Hy(—,0) = ¢ and Hi(—,1) = ¢
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this leads to ¢ ~ ¢;.

At last, we want to show that d(¢, ¢1) < 3¢ holds. So let e be a closed edge of T’
and s € [0, 1] one point on this edge (with the obvious identification as before). If
s € 10,&'], we get dr(s,0) <&’ -£(e) <&’ and therefore

dri(¢(s), 1(s)) < drr(6(s), 6(0)) + dr/($(0), $1(0)) + dr(¢1(0), ¢1(s)) < 3e.

<e'o(p)<e =dr/ (4(0),6(0))<e lww, |[<e

A similar argument shows the same for s € [1 —¢’,1], so let s € (¢/,1 —¢’). If we
consider s,t € [0,1] as elements of the edge e, we have dr(s,t) = djg1)(s,t) - £(e),
which leads to

dri(¢(s), #1(s)) = dr(p(s), p(g(s))

Consequently, this implies d(¢, ¢1) < 3e.

VI
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