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What is a configuration space?

Assume we have a space X, for example a 2-dimensional disc
D2, the surface of the earth S2 or a graph G.

A configuration of n particles in X is given by choosing n
distinct points in X, describing the positions of the particles.

The set of all these configurations is called the n-th ordered
configuration space of X.
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What is a configuration space?

Definition
Let X be a topological space and n ∈ N. The n-th ordered
configuration space of X is the set

Confn(X) :=
{
(x1, . . . , xn) | xi 6= xj for i 6= j

}
⊂ Xn

endowed with the subspace topology.

The symmetric group Σn acts by changing labels, the n-th
unordered configuration space of X is the quotient

UConfn(X) := Confn(X)/Σn

with the quotient topology.
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How different are these two paths?

Two paths are called homotopic if we can continuously deform
one into the other. How many different homotopy classes of
paths connecting two configurations are there?
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The difference of two such paths is a closed loop in the
configuration space. We are therefore interested in the
fundamental group π1(UConfn(X)) of UConfn(X), which is the
set of homotopy classes of closed loops starting in a fixed
configuration.

One can show that π1(UConf2(Y)) ∼= Z is generated by the loop
described above. This shows that every path as above (up to
homotopy) can be written as a sum of those two paths.



What can topology tell us about configuration spaces?

The difference of two such paths is a closed loop in the
configuration space. We are therefore interested in the
fundamental group π1(UConfn(X)) of UConfn(X), which is the
set of homotopy classes of closed loops starting in a fixed
configuration.

One can show that π1(UConf2(Y)) ∼= Z is generated by the loop
described above. This shows that every path as above (up to
homotopy) can be written as a sum of those two paths.
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An invariant that is easier to calculate and that still captures
this fact is singular homology: the first homology group
H1(UConf2(Y)) ∼= Z is generated by the homology class of the
loop constructed above.



What can topology tell us about configuration spaces?

Meta question
What can we say about the singular homology groups
Hi(Confn(X)) and Hi(UConfn(X)) in dependence on the space X
and the natural numbers i and n?



Configuration spaces of graphs



Configuration spaces of graphs

A graph is a 1-dimensional CW complex, so we allow multiple
edges and self-loops.

At first, Confn(G) may seem easier to understand than for
example Confn(D2).

However, for n→ ∞ the dimension of H1(Confn(D2)) grows
polynomially, whereas even for small graphs G (like star
graphs) the dimension of H1(Confn(G)) grows factorially.
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Configuration spaces of graphs

We will be interested in the behavior of the homology for
growing graphs or growing number of particles.

For a triple L ⊂ G ∩ K of finite graphs denote by Gk the result of
gluing k copies of K onto G along L. The space Gk admits an
action of the symmetric group Σk, so H∗(Confn(Gk)) is a
Σk-representation.
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Graph stabilization

Theorem (L)
Assume that either i ≤ 2 or that G and K are trees. Then for
each n ∈ N the sequence k 7→ Hi(Confn(Gk)) satisfies
representation stability.

Read as
Assume that either i ≤ 2 or that G and K are trees. Then for
each n the homology groups Hi(Confn(Gk)) for all k ∈ N can be
computed by a finite computation. Additionally, the dimension
of Hi(Confn(Gk)) is eventually polynomial in k.



Particle stabilization

Theorem (L)
Let G be a finite 3-vertex connected graph with at least four
essential vertices and without self-loops. Then the FI-module
n 7→ H1(Confn(G)) is finitely generated in degree 2.

Read as
Let G be a graph with many paths between any pair of vertices.
Then the homology groups H1(Confn(G)) for all n ∈ N can be
determined by a finite computation. Additionally, the
dimension of H1(Confn(G)) is eventually polynomial in n.



Thanks for listening!
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